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Figure 1: We propose COrrespondence-guided Video Editing (COVE), which leverages the corre-
spondence information of the diffusion feature to achieve consistent and high-quality video editing.
Our method is capable of generating high-quality edited videos with various kinds of prompts (style,
category, background, etc.) while effectively preserving temporal consistency in generated videos.

Abstract

Video editing is an emerging task, in which most current methods adopt the pre-
trained text-to-image (T2I) diffusion model to edit the source video in a zero-shot
manner. Despite extensive efforts, maintaining the temporal consistency of edited
videos remains challenging due to the lack of temporal constraints in the regular
T2I diffusion model. To address this issue, we propose COrrespondence-guided
Video Editing (COVE), leveraging the inherent diffusion feature correspondence
to achieve high-quality and consistent video editing. Specifically, we propose
an efficient sliding-window-based strategy to calculate the similarity among to-
kens in the diffusion features of source videos, identifying the tokens with high
correspondence across frames. During the inversion and denoising process, we
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sample the tokens in noisy latent based on the correspondence and then perform
self-attention within them. To save GPU memory usage and accelerate the editing
process, we further introduce the temporal-dimensional token merging strategy,
which can effectively reduce redundancy. COVE can be seamlessly integrated
into the pre-trained T2I diffusion model without the need for extra training or
optimization. Extensive experiment results demonstrate that COVE achieves the
start-of-the-art performance in various video editing scenarios, outperforming ex-
isting methods both quantitatively and qualitatively. The code will be release at
https://github.com/wangjiangshan0725/COVE

1 Introduction

Diffusion models [24, 60, 62] have shown exceptional performance in image generation [54], thereby
inspiring their application in the field of image editing [6, 22, 7, 50, 64, 21]. These approaches
typically leverage a pre-trained Text-to-Image (T2I) stable diffusion model [54], using DDIM [61]
inversion to transform source images into noise, which is then progressively denoised under the
guidance of a prompt to generate the edited image.

Despite satisfactory performance in image editing, achieving high-quality video editing remains
challenging. Specifically, unlike the well-established open-source T2I stable diffusion models [54],
comparable T2V diffusion models are not as mature due to the difficulty of modeling complicated
temporal motions, and training a T2V model from scratch demands substantial computational
resources [23, 26, 59]. Consequently, there is a growing focus on adapting the pre-trained T2I
diffusion for video editing [14, 30, 10, 69, 70, 51]. In this case, maintaining temporal consistency in
edited videos is one of the biggest challenges, which requires the generated frames to be stylistically
coherent and exhibit smooth temporal transitions, rather than appearing as a series of independent
images. Numerous methods have been working on this topic while still facing various limitations,
such as the inability to ensure fine-grained temporal consistency (leading to flickering [30, 51] or
blurring [14] in generated videos), requiring additional components [27, 69, 10, 70] or needing extra
training or optimization [70, 66, 38], etc.
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Figure 2: Comparison between COVE (our
method) and previous methods[10, 70].

In this work, our goal is to achieve highly con-
sistent video editing by leveraging the intra-
frame correspondence relationship among to-
kens, which is intuitively closely related to the
temporal consistency of videos: If correspond-
ing tokens across frames exhibit high similar-
ity, the resulting video will thus demonstrate
high temporal consistency. Taking a video of a
man as an example, if the token representing his
nose has high similarity across frames, his nose
will be unlikely to deform or flicker through-
out the video. However, how to obtain accurate
correspondence information among tokens is
still largely under-explored in existing works,
although the intrinsic characteristic of the video
editing task (i.e., the source video and edited
video are expected to share similar motion and semantic layout) determines that it naturally exists
in the source video. Some previous methods [10, 70] leverage a pre-trained optical-flow model to
obtain the flowing trajectory of each token across frames, which can be seen as a kind of coarse
correspondence information. Despite the self-attention among tokens in the same trajectory can
enhance the temporal consistency of the edited video, it still encounters two primary limitations:
Firstly, these methods heavily rely on a highly accurate pre-trained optical-flow model to obtain
the correspondence relationship of tokens, which is not available in many scenarios [29]. Secondly,
supposing we have access to an extremely accurate optical-flow model, it is still only able to obtain
the coarse one-to-one correspondence among tokens in different frames (Figure 2a), which would
lead to the loss of information because one token is highly likely to correspond to multiple tokens in
other frames in most cases (Figure 2b).
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Addressing these problems, we notice that the inherent diffusion features naturally contain precise
correspondence information. For instance, it is easy to find the corresponding points between two
images by extracting their diffusion features and calculating the cosine similarity between tokens [63].
However, until now none of the existing works have successfully utilized this characteristic in more
complicated and challenging tasks such as video editing. In this paper, we propose COVE, which is
the first work unleashing the potential of inherent diffusion feature correspondence to significantly
enhance the quality and temporal consistency in video editing. Given a source video, we first extract
the diffusion feature of each frame. Then for each token in the diffusion feature, we obtain its
corresponding tokens in other frames based on their similarity. Within this process, we propose a
sliding-window-based approach to ensure computational efficiency. In our sliding-window-based
method, for each token, it is only required to calculate the similarity between it and the tokens in the
next frame located within a small window, identifying the tokens with the top K (K > 1) highest
similarity. After the correspondence calculation process, for each token, the coordinates of its K
corresponding tokens in each other frame can be obtained. During the inversion and denoising
process, we sample the tokens in noisy latents based on the obtained coordinates. To reduce the
redundancy and accelerate the editing process, token merging is applied in the temporal dimension,
which is followed by self-attention. Our method can be seamlessly integrated into the off-the-shelf
T2I diffusion model without extra training or optimization. Extensive experiments demonstrate that
COVE significantly improves both the quality and the temporal consistency of generated videos,
outperforming a wide range of existing methods and achieving state-of-the-art results.

2 Related Works

2.1 Diffusion-based Image and Video Generation.

Diffusion Models [24, 60, 62] have recently showcased impressive results in image generation, which
generates the image through gradual denoising from the standard Gaussian noise[11, 12, 49, 18, 54,
61, 19]. A large number of efforts on diffusion models [25, 31, 57] has enabled it to be applied to
numerous scenarios [3, 13, 32, 36, 41, 46, 47, 55, 20, 44, 39]. With the aid of large-scale pretraining
[52, 58], text-to-image diffusion models exhibit remarkable progress in generating diverse and high-
quality images [48, 68, 53, 54, 56, 16, 45]. ControlNet [72] enables users to provide structure or
layout information for precise generation. Naturally, diffusion models have found application in video
synthesis, often by integrating temporal layers into image-based DMs [4, 23, 26, 67, 9]. Despite
successes in unconditional video generation [26, 71, 42], text-to-video diffusion models lag behind
their image counterparts.

2.2 Text-to-Video Editing.

There are increasing works adopting the pre-trained text-to-image diffusion model to the video
editing task [40, 65, 66, 43, 17], where keeping the temporal consistency in the generated video is the
most challenging. Recently, a large number of works focusing on zero-shot video editing has been
proposed. FateZero [51] proposes to use attention blending to achieve high-quality edited videos
while struggling to edit long videos. TokenFlow [14] reduces the effects of flickering through the
linear combinations between diffusion features, while the smoothing strategy can cause blurring
in the generated video. RAVE [30] proposes the randomized noise shuffling method, suffering
the problem of fine details flickering. There are also a large number of methods that enhance the
temporal consistency with the aid of pre-trained optical-flow models [70, 69, 10, 27]. Although
the effectiveness of them, all of them severely rely on a pre-trained optical-flow model. Recent
works [63] illustrate that the diffusion feature contains rich correspondence information. Although
VideoSwap [15] adopts this characteristic by tracking the key points across frames, it still needs users
to provide the key points as the extra addition manually.

3 Method

In this section, we will introduce COVE in detail, which can be seamlessly integrated into the
pre-trained T2I diffusion model for high-quality and consistent video editing without the need for
training or optimization (Figure 3). Specifically, given a source video, we first extract the diffusion
feature of each frame using the pre-trained T2I diffusion model. Then, we calculate the one-to-many
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Figure 3: The overview of COVE. (a). Given a source video, we extract the diffusion feature of
each frame using the pre-trained T2I model and calculate the correspondence among tokens (detailed
in Figure 4). (b). During the video editing process, we sample the tokens in noisy latent based on
correspondence and apply self-attention among them. (c). The correspondence-guided attention can
be seamlessly integrated into the T2I diffusion model for consistent and high-quality video editing.

correspondence of each token across frames based on cosine similarity (Figure 3a). To reduce
resource consumption during correspondence calculation, we further introduce an efficient sliding-
window-based strategy (Figure 4). During each timestep of inversion and denoising in video editing,
the tokens in the noisy latent are sampled based on the correspondence and then merged. Through
the self-attention among merged tokens (Figure 3b), the quality and temporal consistency of edited
videos are significantly enhanced.

3.1 Preliminary

Diffusion Models. DDPM [24] is the latent generative model trained to reconstruct a fixed forward
Markov chain x1, . . . , xT . Given the data distribution x0 ∼ q(x0), the Markov transition q(xt|xt−1)
is defined as a Gaussian distribution with a variance schedule βt ∈ (0, 1).

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI). (1)

To generate the Markov chain x0, · · · , xT , DDPM leverages the reverse process with a prior distribu-
tion p(xT ) = N (xT ; 0, I) and Gaussian transitions. A neural network ϵθ is trained to predict noises,
ensuring that the reverse process is close to the forward process.

pθ(xt−1|xt) = N (xt−1;µθ(xt, τ , t),Σθ(xt, τ , t)), (2)

where τ indicates the textual prompt. µθ and Σθ are predicted by the denoising model ϵθ. Since the
diffusion and denoising process in the pixel space is computationally extensive, latent diffusion [54]
is proposed to address this issue by performing these processes in the latent space of a VAE [34].

DDIM Inversion. DDIM can convert random noise to a deterministic x0 during sampling [61, 12].
The inversion process in deterministic DDIM can be formulated as follows:

xt+1 =

√
αt+1

αt
xt +

√
αt+1

(√
1

αt+1 − 1
−
√

1

αt
− 1

)
ϵθ(xt), (3)

where αt denotes
∏t

i=1(1− βi). The inversion process of DDIM is utilized to transform the input
x0 into xT , facilitating subsequent tasks such as reconstruction and editing.

3.2 Correspondence Acquisition

As discussed in Section 1, intra-frame correspondence is crucial for the quality and temporal consis-
tency of edited videos while remaining largely under-explored in existing works. In this section, we
introduce our method for obtaining correspondence relationships among tokens across frames.
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Figure 4: Sliding-window-based strategy for correspondence calculation. t represents the token
p{i,hi,wi}. t and t represents the obtained corresponded tokens in other frames.

Diffusion Feature Extraction. Given a source video V with N frames, a VAE [34] is employed on
each frame to extract the latent features Z = {z1, · · · , zN}, where Z ∈ RN×H×W×d. Here, H and
W denote the height and width of the latent feature and d denotes the dimension of each token. For
each frame of Z, we add noise of a specific timestep t and feed the noisy frame Zt = {zt

1, · · · , zt
N}

into the pre-trained T2I model fθ respectively. The diffusion feature (i.e., the intermediate feature
from the U-Net decoder) is extracted through a single step of denoising [63]:

F = {Fi} = {fθ(zt
i)}, i ∈ {1, · · · , N}, (4)

where F ∈ RN×H×W×d, denoting the normalized diffusion feature of each frame.

One-to-many Correspondence Calculation. For each token within the diffusion feature F , its
corresponding tokens in other frames are identified based on the cosine similarity. Without loss
of generality, we could consider a specific token p{i,hi,wi} in the ith frame Fi with the coordinate
[hi, wi]. Unlike previous methods where only one corresponding token of p{i,hi,wi} can be identified
in each frame (Figure 2a), our method can obtain the one-to-many correspondences simply by
selecting tokens with the top K highest similarity in each frame. We record their coordinates, which
are used for sampling the tokens for self-attention in the subsequent inversion and denoising process.
To implement this process, the most straightforward method is through a direct matrix multiplication
of the normalized diffusion feature F .

S = F · F T , (5)

where S ∈ R(N×H×W )×(N×H×W ) represents the cosine similarity between each token and all
tokens in the diffusion feature of the video.

The similarity between p{i,hi,wi} and all N×H×W tokens in the feature is given by S[i, hi, wi, :, :, :].
The coordinates of the corresponding tokens in the jth frame (j ∈ {1, · · · , N}) are then obtained by
selecting the tokens with the top K similarities in the jth frame.

hk
j , w

k
j = top-k-argmax(xk,yk)(S[i, hi, wi, j, x

k, yk]), (6)

Here the top-k-argmax(·) denotes the operation to find coordinates of the top K biggest values in
a matrix, where k ∈ {1, · · · ,K}. [hk

j , w
k
j ] represents the coordinates of the token in jth frame

which has highest similarity with p{i,hi,wi}. A similar process can be conducted for each token of F ,
thereby obtaining their correspondences among frames.

Sliding-window Strategy. Although the one-to-many correspondence among tokens can be effec-
tively obtained through the above process, it requires excessive computational resources because
(N ×H ×W ) is always a huge number, especially in long videos. As a result, the computational
complexity of this process is extremely high, which can be represented as O(N2 ×H2 ×W 2 × d).
At the same time, multiplication between these two huge matrices consumes a substantial amount
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of GPU memory in practice. These limitations severely limit its applicability in many real-world
scenarios, such as on mobile devices.

To address the above problem, we further propose the sliding-window-based strategy as an alternative,
which not only effectively obtains the one-to-many correspondences but also significantly reduces the
computational overhead (Figure 4). Firstly, for the token p{i,hi,wi}, it is only necessary to calculate
its similarity with the tokens in the next frame Fi+1 instead of in all frames, i.e.,

Si = Fi · F T
i+1. (7)

Si ∈ RH×W×H×W denotes the similarity between the tokens in ith frame and those in (i+1)th frame.
The overall similarity matrix is S = {Si}, i ∈ {1, 2, · · · , N − 1}, where S ∈ R(N−1)×H×W×H×W .
Then, we obtain the K corresponded tokens of p{i,hi,wi} in Fi+1 through Si,

hk
i+1, w

k
i+1 = top-k-argmax(xk,yk)(Si[hi, wi, x

k, yk]), (8)

For tokens in (i+ 2)th frame, instead of considering p{i,hi,wi}, we identify the tokens in (i+ 2)th
frame which have the top K largest similarity with the token p{i+1,h1

i+1,w
1
i+1} through the Si+1.

Similarly, we can obtain the corresponding token in other future or previous frames.

hk
i+2, w

k
i+2 = top-k-argmax(xk,yk)(Si+1[h

1
i+1, w

1
i+1, x

k, yk]), (9)

Through the above process, the overall complexity is reduced to O((N − 1) × H2 × W 2 × d).
Furthermore, it is noteworthy that frames in a video exhibit temporal continuity, implying that the
spatial positions of corresponding tokens are unlikely to change significantly between consecutive
frames. Consequently, for the token p{i,hi,wi}, it is enough to only calculate the similarity within a
small window of length l in the adjacent frame, where l is much smaller than H and W ,

Fw
i+1 = Fi+1[hi − l/2 : hi + l/2, wi − l/2 : wi + l/2, :]. (10)

Fw
i+1 ∈ Rl×l×d represents the tokens in Fi+1 within the sliding window. We calculate the cosine

similarity between p{i,hi,wi} and the tokens in Fw
i+1, selecting tokens with top K highest similarity

within Fw
i+1. This approach further reduces the computational complexity to O((N − 1)×H ×W ×

l2 × d) and the GPU memory consumption is also significantly reduced in practice. Additionally, it
is worth noting that calculating correspondence information from the source video is only conducted
once before the inversion and denoising process of video editing. Compared with the subsequent
editing process, this process only takes negligible time.

3.3 Correspondence-guided Video Editing.

In this section, we explain how to apply the correspondence information to the video editing process
(Figure 3c). In the inversion and denoising process of video editing, we sample the corresponding
tokens from the noisy latent for each token based on the coordinates obtained in Section 3.2. For the
token zt

i,hi,wi
, the set of corresponding tokens in other frames at a timestep t is:

Corr = {zt
{j,hk

j ,w
k
j }
}, j ∈ {1, · · · , i− 1, i+ 1, · · · , N}, k ∈ {1, · · · ,K}. (11)

We merge these tokens following [5], which can accelerate the editing process and reduce GPU
memory usage without compromising the quality of editing results:

C̃orr = Merge(Corr). (12)
Then, the self-attention is conducted on the merged tokens,

Q = zt
{i,hi,wi},K = V = C̃orr, (13)

Attention(Q,K,V ) = SoftMax
(
Q ·KT

√
dk

)
· V , (14)

where
√
dk is the scale factor. The above process of correspondence-guided attention is illustrated

in Figure 3b. Following the previous methods [70, 10], we also retain the spatial-temporal attention
[66] in the U-Net. In spatial-temporal attention, considering a query token, all tokens in the video
serve as keys and values, regardless of their relevance to the query. This correspondence-agnostic
self-attention is not enough to maintain temporal consistency, introducing irrelevant information into
each token, and thus causing serious flickering effects [10, 14]. Our correspondence-guided attention
can significantly alleviate the problems of spatial-temporal attention, increasing the similarity of
corresponding tokens and thus enhancing the temporal consistency of the edited video.
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Source Video Source Video Source Video

Ship in the river, evening glow A car driving in sunset A plushy toy of teddy bear

A car driving in milky way Van Gogh style A cute raccoon

Source Video Source Video Source Video

Origami style Milk pour out of the pot A sorrow woman

An ego flying in blue sky Cartoon style Happy woman with sunglasses

Source video In winter Source Video

Traditional Chinese house In autumn Wide sea and snow mountain

Figure 5: Qualitative results of COVE. COVE can effectively handle various types of prompts,
generating high-quality videos. For both global editing (e.g., style transferring and background
editing) and local editing (e.g., modifying the appearance of the subject), COVE demonstrates
outstanding performance. Results are best-viewed zoomed-in.

4 Experiment

4.1 Experimental Setup

In the experiment, we adopt Stable Diffusion (SD) 2.1 from the official Huggingface repository for
COVE, employing 100 steps of DDIM inversion and 50 steps of denoising. To extract the diffusion
feature, the noise of the specific timestep t = 261 is added to each frame of the source video following
[63]. The feature is then extracted from the intermediate layer of the 2D Unet decoder during a single
step of denoising. The window size l is set to 9 for correspondence calculation, and k is set to 3 for
correspondence-guided attention. The merge ratio for token merging is 50%. For both qualitative and
quantitative evaluation, we select 23 videos from social media platforms such as TikTok and other
publicly available sources [1, 2]. Among these 23 videos, 3 videos have a length of 10 frames, 15
videos have a length of 20 frames, and 5 videos have a length of 32 frames. The experiments are
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Figure 6: Qualitative comparison of COVE and various state-of-the-art methods. Our method
outperforms previous methods across a wide range of source videos and editing prompts, demonstrat-
ing superior visual quality and temporal consistency. Results are best-viewed zoomed-in.

conducted on a single RTX 3090 GPU for our method unless otherwise specified. We compare COVE
with 5 baseline methods: FateZero [51], TokenFlow [14], FLATTEN [10], FRESCO [70] and RAVE
[30]. For all of these baseline methods, we follow the default settings from their official Github
repositories. The more detailed experimental settings of our method are provided in Appendix A.

4.2 Qualitative Results

We evaluate COVE on various videos under different types of prompts including both global and
local editing (Figure 5). Global editing mainly involves background editing and style transferring.
For background editing, COVE can modify the background while keeping the subject of the video
unchanged (e.g. Third row, first column. “a car driving in milky way”). For style transfer,
COVE can effectively modify the global style of the source video according to the prompt (e.g. Third
row, second column. “Van Gogh style”). Our prompts for local editing include changing the
subject of the video to another one (e.g. Third row, third column. “A cute raccoon”) and making
local edits to the subject (e.g. fifth row, third column. “A sorrow woman”). For all of these editing
tasks, COVE demonstrates outstanding performance, generating frames with high visual quality
while successfully preserving temporal consistency. We also compare COVE with a wide range
of state-of-the-art video editing methods (Figure 6). The experimental results illustrate that COVE
effectively edits the video with high quality, significantly outperforming the previous methods.

4.3 Quantitative Results

For quantitative comparison, we follow the metrics proposed in VBench [28], including Subject
Consistency, Motion Smoothness, Aesthetic Quality, and Imaging Quality. Among them, Subject
Consistency assesses whether the subject (e.g., a person) remains consistent throughout the whole
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video by calculating the similarity of DINO [8] feature across frames. Motion Smoothness utilizes
the motion priors of the video frame interpolation model [37] to evaluate the smoothness of the
motion in the generated video. Aesthetic Quality uses the LAION aesthetic predictor [35] to assess
the artistic and beauty value perceived by humans on each frame. Imaging Quality evaluates the
degree of distortion in the generated frames (e.g., blurring, flickering) through the MUSIQ [33] image
quality predictor. Each video undergoes editing with 3 global prompts (such as style transferring,
background editing, etc.) and 2 local prompts (such as editing the appearance of the subject in the
video), generating a total of 115 text-video pairs. For each metric, we report the average score of these
115 videos. We further conducted a user study with 45 participants following [70]. Participants are
required to choose the most preferable results among these methods. The result is shown in Table 1.
Among various methods, COVE achieves outstanding performance in both qualitative metrics and
user studies, further demonstrating its superiority.

Subject Motion Aesthetic Imaging User
Consistency Smoothness Quality Quality Study

FateZero [51] 0.9622 0.9547 0.6258 0.6951 7.4%
TokenFlow [14] 0.9513 0.9803 0.6904 0.7354 13.0%
FLATTEN [10] 0.9617 0.9622 0.6544 0.7155 14.8%
FRESCO [70] 0.9358 0.9737 0.6582 0.6331 9.2%

RAVE [30] 0.9518 0.9732 0.6369 0.7355 11.1%
COVE (Ours) 0.9731 0.9892 0.7122 0.7441 44.5%

Table 1: Quantitative comparison among COVE and
a wide range of state-of-the-art video editing meth-
ods. The evaluation metrics[28] can effectively reflect
the temporal consistency and frame quality of gener-
ated videos. COVE illustrates superior performance in
both keeping the temporal consistency and generating
frames with high quality in edited videos.

Subject Motion Aesthetic Imaging
Consistency Smoothness Quality Quality

w/o 0.9431 0.9049 0.6913 0.7132
K = 1 0.9637 0.9817 0.6979 0.7148
K = 3 0.9731 0.9892 0.7122 0.7441
K = 5 0.9745 0.9886 0.7167 0.7429

Table 2: Ablation study on the value of K in
correspondence-guided attention. w / o means with-
out correspondence-guided attention in Unet. When
K = 3 the quality of the video is the best.

Source video
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 o

Crochet Style

𝑲
 =

 1
𝑲

 =
 3

𝑲
 =

 5

Figure 7: Ablation study about the
correspondence-guided attention and the
value of K. w / o means do not apply
correspondence-guided attention.

4.4 Ablation Study

We conduct an ablation study to illustrate the effectiveness of the Correspondence-guided attention
and the number of tokens selected in each frame (i.e., the value of K). The experimental results
(Table 2 and Figure 7) illustrate that without correspondence-guided attention, the edited video
exhibits obvious temporal inconsistency and flickering effects (which is marked in yellow and orange
boxes in Figure 7), thus severely impairing the visual quality. As K increases from 1 to 3, the
generated video contains more fine-grained details, exhibiting better visual quality. However, further
increasing K to 5 does not significantly improve the video quality. We also illustrate the effectiveness
of temporal dimensional token merging. By merging the tokens with high correspondence across
frames, the editing process becomes more efficient (Table 3) while there is no significant decrease
in the quality of the edited video (Figure 8). The ablation of the sliding-window size l is shown in
Appendix B. If the window size is too small, the actual corresponding token may not be included
within the window, resulting in suboptimal correspondence and poor editing results. On the other
hand, a too-large window size is not necessary for identifying the corresponding tokens, which would
lead to high computational complexity and excessive memory usage. The experiment results illustrate
that l = 9 is suitable to strike a balance. Additionally, we also visualize the correspondence obtained
by COVE, which is shown in Appendix C.
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Correspondence Token Speed Memory
Guided Attention Merging Usage

✗ ✗ 2.2 min 9 GB
✓ ✗ 2.7 min 14 GB
✓ ✓ 2.4 min 11 GB

Table 3: Ablation Study on the effect of temporal
dimensional token merging. Temporal dimensional
token merging can speed up the editing process and
save GPU memory usage while hardly impairing the
quality of the generated video. The experiment is con-
ducted on a single RTX3090 GPU with a 10-frame
source video. k is set to 3.

Source video
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Figure 8: Token merging would not im-
pair the quality of edited video.

5 Conclusion

In this paper, we propose COVE, which is the first to explore how to employ inherent diffusion
feature correspondence in video editing to enhance editing quality and temporal consistency. Through
the proposed efficient sliding-window-based strategy, the one-to-many correspondence relationship
among tokens across frames is obtained. During the inversion and denoising process, self-attention is
performed within the corresponding tokens to enhance temporal consistency. Additionally, we also
apply token merging in the temporal dimension to improve the efficiency of the editing process. Both
quantitative and qualitative experimental results demonstrate the effectiveness of our method, which
outperforms a wide range of previous methods, achieving state-of-the-art editing quality.

Limitaions. The limitation of our method is discussed in Appendix E.
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Appendix

A Detailed Experimental Settings

In the experiment, the size of all source videos is 512 × 512. We adopt Stable Diffusion (SD) 2.1
from the official Huggingface repository for our method. To extract the diffusion feature, following
[63], the noise of the timestep t = 261 is added to each frame of the source video. The noisy frames
of video are fed into the U-net, the feature is extracted from the intermediate layer of the 2D Unet
decoder. The height and weight of the diffusion feature is 64. Following previous works, at the first
40 timesteps, the diffusion features are saved during DDIM inversion and are further injected during
denoising. For Spatial-temporal attention, we use the xFormers to reduce memory consumption,
while it is not used in correspondence-guided attention.

B Ablation Study on the Window Size

To illustrate the influence of window size l, we conduct the experiment on a video with 20 frames
on a single A100 GPU. During the correspondence calculation process, we calculate the theoretical
computational complexity, which is the total number of multiplications and additions required. We
also record actual GPU memory consumed under different window sizes, the result is shown in
Appendix B. With our sliding window strategy, the computational complexity and the GPU memory in
the correspondence calculation process are significantly reduced. The visualization result is shown in
Fig. 9. If the window size is too small, the motion in the video cannot be tracked, causing unsatisfying
results. We choose l = 9 for the experiments in other sections, which can achieve a balance between
the memory consumed and the quality of the edited video.

Window Size (l) 3 9 15 w/o

Computational Complexity (×109) 0.448 4.03 11.2 241
GPU Memory (GB) 11 14 18 32

Table 4: Ablation Study on the window size l. w/o means that the sliding-window strategy is not
applied. The sliding window strategy can significantly reduce the use of computational complexity
and GPU memory.

Source Video

Van Gogh style
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Figure 9: Ablation Study on the window size l.
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C Visualisation of the Correspondence

We visualize the correspondence calculated by our sliding-window-based method to illustrate its
effectiveness (Fig. 10). To be specific, we calculate the correspondence based on the 64×64 diffusion
feature, which is extracted at the final layer of the U-net decoder. We select the token representing
the left eye of the wolf in the 7th frame (marked in red) and visualize its corresponding tokens in
other frames (marked in yellow). The result illustrates that our method can effectively identify the
corresponding tokens.

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

Frame 6 Frame 7 Frame 8 Frame 9 Frame 10

Figure 10: Visualsation of the correspondence calculated by our method.

D Broader Impacts

Our work enables high-quality video editing, which is in high demand across various social media
platforms, especially short video websites like TikTok. Using our method, people can easily create
high-quality and creative videos, significantly reducing production costs. However, there is a potential
for misuse, such as replacing the characters in videos with celebrities, which may infringe upon the
celebrities’ image rights. Therefore, it is also necessary to improve relevant laws and regulations to
ensure the legal use of our method.

E Limitations

Despite achieving outstanding results, our methods still encounter several limitations. First, although
the correspondence calculation process is efficient through the proposed sliding window strategy, the
implementation of correspondence-guided attention is still not efficient enough, leading to the extra
usage of GPU memory and time (Table 3). This problem is expected to be alleviated largely through
the use of xFormers. We will work on it in the future.

Second, further exploration is required to optimize the application of the obtained correspondence
information. In this study, we utilize the correspondence information to sample tokens during
the inversion and denoising processes and do the self-attention. However, we believe that there
may be more effective alternatives to self-attention that could further unleash the potential of the
correspondence information.

F More Qualitative Results

We provide more qualitative results of our method to illustrate its effectiveness, which is shown in
Fig. 12 and Fig. 11.
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Source Video

A car driving in sunset

A car driving in dry desert

A car, oil painting style

A red car in snowy winter

A Wooden car

Style of Comic Book

Style of Van Gogh

Figure 11: Qualitative results of our methods. Our method can effectively handle various kinds of
prompts, generating high-quality videos. Results are best viewed in zoomed-in.
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Source Video

A marble sculpture

Cartoon style

An African woman in grey clothes

A woman dressed like Black widow

Figure 12: Qualitative results of our methods. Our method can effectively handle various kinds of
prompts, generating high-quality videos. Results are best viewed in zoomed-in.
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